return to the main page "Calculus I for Management"
return to the section "Integration by Parts"
Worked-Out Exercises: Integration by Parts
The following set of exercises is given together with hints, solutions, and solution paths. They are designed such that
you can first try to solve them and in case you need help, please, open the "hints" section. For checking your
answer, please, open the "solution" section and for getting more details or checking your way of solving the
exercise, please, open the "solution path" section.
|
|
|
Exercise 1: Evaluating an Integral |
| |
Evaluate the following integral using integration by parts by using the choice \( u = \ln(x) \) and \( \textrm{d} v = \sqrt{x} \, \textrm{d} x \):
$$
\int \, \sqrt{x} \cdot \ln(x) \, \textrm{d} x
$$
|
|
Hint
(please, click on the "+" sign to read more)
use integration by parts with suitably chosen functions \( u \) and \(v \):
$$
\int \, u \, \textrm{d} v \, \, = \, \, u \, v \, - \, \int \, v \, \textrm{d} u
$$
|
|
Solution
(please, click on the "+" sign to read more)
\( \tfrac{2}{3} x^{3/2} \left( \ln(x) - \tfrac{2}{3} \right) + C \)
|
|
Solution Path
(please, click on the "+" sign to read more)
By choosing
$$
\begin{array}{r c l c r c l}
u & = & \ln(x)\qquad & \qquad & \textrm{d} v & = & \sqrt{x} \, \textrm{d} x \qquad \\[4mm]
\textrm{d} u & = & \frac{1}{x} \, \textrm{d} x \qquad & & v & = & \tfrac{2}{3} \, x^{3/2} \qquad
\end{array}
$$
we obtain
\( \int \, \sqrt{x} \cdot \ln(x) \, \textrm{d} x = \)
\( \tfrac{2}{3} x^{3/2} \ln(x) - \tfrac{2}{3} \int \, x^{(3/2) - 1} \, \textrm{d} x \, \, = \, \, \)
\( \tfrac{2}{3} x^{3/2} \ln(x) - \tfrac{2}{3} \int \, \sqrt{x} \, \textrm{d} x\\ = \)
\( =\tfrac{2}{3} x^{3/2} \ln(x) - \tfrac{2}{3} \cdot \left( \tfrac{2}{3} x^{3/2} \right) + C \, \, = \, \, \)
\( \tfrac{2}{3} x^{3/2} \left( \ln(x) - \tfrac{2}{3} \right) + C \)
|
|
Exercise 2: Use Integration by Parts
to Prove a Reduction Formula |
| |
$$
\int \, \left( \ln(x) \right)^n \, \textrm{d} x \, \, = \, \, x \cdot \left( \ln(x) \right)^n \, - \, n \, \int \, \left( \ln(x) \right)^{n-1} \, \textrm{d} x
$$
|
|
Hint
(please, click on the "+" sign to read more)
use integration by parts with suitably chosen functions \( u \) and \(v \):
$$
\int \, u \, \textrm{d} v \, \, = \, \, u \, v \, - \, \int \, v \, \textrm{d} u
$$
|
|
Solution Path
(please, click on the "+" sign to read more)
By choosing
$$
\begin{array}{r c l c r c l}
u & = & (\ln(x))^n \qquad & \qquad \qquad & \textrm{d} v & = & 1 \, \textrm{d} x \qquad \\[4mm]
\textrm{d} u & = & \frac{n}{x} \, (\ln(x))^{n-1} \, \textrm{d} x \qquad & & v & = & x \qquad
\end{array}
$$
we obtain
$$ \int \, \left( \ln(x) \right)^n \, \textrm{d} x = x \cdot \left( \ln(x) \right)^n \, - \, n \, \int \, \left( \ln(x) \right)^{n-1} \cdot \frac{x}{x} \, \textrm{d} x $$
|
|
Exercise 3: Applying Integration by Parts Twice |
| |
If \( f(0) = g(0) = 0 \) and \( f'' \) and \( g'' \) are continuous, show that
$$
\int^a_0 \, f(x) g''(x) \, \textrm{d} x \, \, = \, \, f(a) g'(a) \, - \, f'(a) g(a) \, + \, \int^a_0 \, f''(x) g(x) \, \textrm{d} x
$$
|
|
Hint
(please, click on the "+" sign to read more)
use integration by parts several times
|
|
Solution Path
(please, click on the "+" sign to read more)
$$ \int^a_0 \, f(x) g''(x) \, \textrm{d} x \stackrel{\text{(IP)}}{=}
f(a) \cdot g'(a) \, - \, \underbrace{f(0) \cdot g'(0)}_{= \, 0} \, - \, \int^a_0 \, f'(x) g'(x) \, \textrm{d} x \ {=}$$
$$\stackrel{\text{(IP)}}{=}
f(a) \cdot g'(a) \, - \, f'(a) \cdot g(a) \, + \, \underbrace{f'(0) \cdot g(0)}_{= \, 0}
+ \, \int^a_0 \, f''(x) g(x) \, \textrm{d} x $$
|
|
Exercise 4: Evaluating Integrals |
| |
Evaluate the following integrals using integration by parts:
$$ {\bf{a)}} {\displaystyle{ \int^5_1 \, \frac{x}{{\rm{e}}^x} \, \textrm{d} x }} $$
as well as
$$ {\bf{b)}} {\displaystyle{ \int \, (1+x^2) \cdot {\rm{e}}^{3x} \, \textrm{d} x }} $$
|
|
Hint
(please, click on the "+" sign to read more)
for part \( \bf{(b)} \) and applying integration by parts twice may be necessary.
|
|
Solution
(please, click on the "+" sign to read more)
$$ {\bf{a)}} -6 {\rm{e}}^{-5} + 2 {\rm{e}}^{-1} \, \, \approx \, \, 0.6953312004 $$
$$ {\bf{b)}} \tfrac{1}{3} \, \left( \tfrac{11}{9} - \tfrac{2}{3} x + x^2 \right) \, {\rm{e}}^{3x} $$
|
|
Solution Path
(please, click on the "+" sign to read more)
$$ \int \, u \, \textrm{d} v \, \, = \, \, u \, v \, - \, \int \, v \, \textrm{d} u $$
\( {\bf{a)}} \) by choosing
$$
\begin{array}{r c l c r c l}
u & = & x \qquad & \qquad & \textrm{d} v & = & {\rm{e}}^{-x} \, \textrm{d} x qquad \\[4mm]
\textrm{d} u & = & 1 \, \textrm{d} x \qquad & & v & = & -{\rm{e}}^{-x} \qquad
\end{array}
$$
we obtain
$$ \int^5_1 \, x \cdot {\rm{e}}^{-x} \, \textrm{d} x
\big[ -x \cdot {\rm{e}}^{-x} \big]^5_1 \, + \, \int^5_1 \, {\rm{e}}^{-x} \, \textrm{d} x \ {=} $$
$$ \, \, = \, \, \big[ -{\rm{e}}^{-x} \left( x + 1 \right) \big]^5_1 \\[2mm]
-6 {\rm{e}}^{-5} + 2 {\rm{e}}^{-1} \, \, \approx \, \, 0.6953312004 $$
\( {\bf{b)}} \) by choosing
$$
\begin{array}{r c l c r c l}
u & = & (1+x^2) \qquad & \qquad & \textrm{d} v & = & {\rm{e}}^{3x} \, \textrm{d} x \qquad \\[4mm]
\textrm{d} u & = & 2x \, \textrm{d} x \qquad & & v & = & \tfrac{1}{3} {\rm{e}}^{3x} \qquad
\end{array}
$$
we obtain
$$ {\bf{b)}} \int \, (1+x^2) \cdot {\rm{e}}^{3x} \, \textrm{d} x \ {=}
\tfrac{1}{3} \, (1+x^2) \, {\rm{e}}^{3x} \, - \, \tfrac{2}{3} \int \, x \cdot {\rm{e}}^{3x} \, \textrm{d} x \\ \ {=} $$
$$ \ {=} \tfrac{1}{3} \, (1+x^2) \, {\rm{e}}^{3x} \, - \, \
\tfrac{2}{3} \left( \tfrac{1}{3} \, x \, {\rm{e}}^{3x} \, - \, \tfrac{1}{3} \int \, {\rm{e}}^{3x} \, \textrm{d} x \right) \\ \ {=} $$
$$ \ {=} \tfrac{1}{3} \, \left( \tfrac{11}{9} - \tfrac{2}{3} x + x^2 \right) \, {\rm{e}}^{3x} $$
|
|
Exercise 5: Evaluating a Integral |
| |
$$ {\displaystyle{ \int^1_0 \, \frac{x^3}{\sqrt{4+x^2}} \, \textrm{d} x }} $$
|
|
Hint
(please, click on the "+" sign to read more)
|
|
Solution
(please, click on the "+" sign to read more)
$$ \tfrac{16}{3} - \tfrac{7}{3} \sqrt{5} $$
|
|
Solution Path
(please, click on the "+" sign to read more)
by choosing
$$
\begin{array}{r c l c r c l}
u & = & x^2 \qquad & \qquad \qquad & \textrm{d} v & = & \frac{x}{\sqrt{4+x^2}} \, \textrm{d} x \qquad \\[4mm]
\textrm{d} u & = & 2 x \, \textrm{d} x \qquad & & v & = & \sqrt{4+x^2} \qquad
\end{array}
$$
we obtain
$$ \int^1_0 \, \frac{x^2 \cdot x}{\sqrt{4+x^2}} \, \textrm{d} x
\ {=} \big[ x^2 \cdot \sqrt{4 + x^2} \big]^1_0 \, - \, \int^1_0 \, 2x \cdot \sqrt{4 + x^2} \, \textrm{d} x \ {=} $$
$$ \ {=}\sqrt{5} \, - \, \Big[ \tfrac{2}{3} (4 + x^2)^{3/2} \Big]^1_0 \, \, = \, \, \tfrac{16}{3} - \tfrac{7}{3} \sqrt{5}
$$
|
|
Exercise 6: Evaluating an Indefinite Integral |
| |
$$ {\displaystyle{ \int \, {\rm{e}}^x \sin(\pi x) \, \textrm{d} x }} $$
|
|
Hint
(please, click on the "+" sign to read more)
integration by parts twice may be necessary
|
|
Solution
(please, click on the "+" sign to read more)
$$
\ { } {\rm{e}}^x \sin(\pi x) - \pi {\rm{e}}^x \cos(\pi x) - \pi^2 \int \, {\rm{e}}^x \sin(\pi x) \, \textrm{d} x
$$
|
|
Solution Path
(please, click on the "+" sign to read more)
by choosing
$$
\begin{array}{r c l c r c l}
u & = & \sin(\pi x) \qquad & \qquad \qquad & \textrm{d} v & = & {\rm{e}}^x \, \textrm{d} x \qquad \\[4mm]
\textrm{d} u & = & \pi \, \cos(\pi x) \, \textrm{d} x \qquad & & v & = & {\rm{e}}^x \qquad
\end{array}
$$
we first obtain
$$
\int \, {\rm{e}}^x \sin(\pi x) \, \textrm{d} x \ {=}
{\rm{e}}^x \sin(\pi x) - \pi \int \, {\rm{e}}^x \cos(\pi x) \, \textrm{d} x
$$
which makes second integration by parts necessary, so next by choosing
$$
\begin{array}{r c l c r c l}
u & = & \cos(\pi x) \qquad & \qquad \qquad & \textrm{d} v & = & {\rm{e}}^x \, \textrm{d} x \qquad \\[4mm]
\textrm{d} u & = & -\pi \, \sin(\pi x) \, \textrm{d} x \qquad & & v & = & {\rm{e}}^x \qquad
\end{array}
$$
we obtain
$$
\int \, {\rm{e}}^x \sin(\pi x) \, \textrm{d} x \ {=} \ { }
{\rm{e}}^x \sin(\pi x) - \pi \int \, {\rm{e}}^x \cos(\pi x) \, \textrm{d} x \\[2mm] \ {=}
$$
$$
\ {=} \ { }{\rm{e}}^x \sin(\pi x) - \pi \left( {\rm{e}}^x \cos(\pi x) + \pi \int \, {\rm{e}}^x \sin(\pi x) \, \textrm{d} x \right) \\[2mm] \ {=}
$$
$$
\ {=} \ { } {\rm{e}}^x \sin(\pi x) - \pi {\rm{e}}^x \cos(\pi x) - \pi^2 \int \, {\rm{e}}^x \sin(\pi x) \, \textrm{d} x
$$
|
|
|
Copyright Kutaisi International University — All Rights Reserved — Last Modified: 12/ 10/ 2022
|
|
|